MATH 320 NOTES, WEEK 2

Recall: Let V be a vector space, $W \subset V$ is a subspace iff $\overrightarrow{0} \in W$, and W is closed under vector addition and multiplication.

Some trivial examples: both $\{\overrightarrow{0}\}$ and V are subspaces of V.
Let us recall some more set theoretic notation:

- Intersection: $A \cap B=\{x \mid x \in A$ and $x \in B\}$
- Union: $A \cap B=\{x \mid x \in A$ or $x \in B\}$
- Set difference: $A \backslash B=\{x \mid x \in A$ and $x \notin B\}$

Recall the key theorem that W is a subspace of V iff $\overrightarrow{0} \in W$, and W is closed under both vector addition and scalar multiplication. We can actually show the last two at once:

Corollary 1. W is a subspace of a vector space V over F iff $\overrightarrow{0} \in W$, and for all $x, y \in W$ and $c \in F$, we have $c x+y \in W$.
Proof. Exercise.

Definition 2. A matrix $A \in M_{n, n}(F)$ is called skew-symmetric iff $A^{t}=-A$.
Example. Show that the set of all skew-symmetric n by n matrices is a subspace of $M_{n, n}(F)$.

Theorem 3. Suppose that W_{1} and W_{2} are two subspaces of a vector space V. Then their intersection $W_{1} \cap W_{2}$ is also a subspace.
Proof. We have to check the three requirements of being a subspace hold for $W_{1} \cap W_{2}$.
(1) $\overrightarrow{0} \in W_{1}$ and $\overrightarrow{0} \in W_{2}$, so $\overrightarrow{0} \in W_{1} \cap W_{2}$.
(2) Suppose $x, y \in W_{1} \cap W_{2}$. Since W_{1} is a subspace and $x, y \in W_{1}$, we have $x+y \in W_{1}$. Also, since W_{2} is a subspace and $x, y \in W_{2}$, we have $x+y \in W_{2}$. So $x+y \in W_{1} \cap W_{2}$.
(3) Suppose $x \in W_{1} \cap W_{2}, c \in F$. Since W_{1} is a subspace and $x \in W_{1}$, we have $c x \in W_{1}$. Also, since W_{2} is a subspace and $x \in W_{2}$, we have $c x \in W_{2}$. So $c x \in W_{1} \cap W_{2}$.

Remark 4. Similarly, any intersection of subspaces $W_{1} \cap W_{2} \ldots \cap W_{n}$ is a subspace.

Question: What about $W_{1} \cup W_{2}$?
This question motivates the following definition:

Definition 5. Let W_{1} and W_{2} be two subspaces of V. Define the sum $W_{1}+W_{2}=\left\{x+y \mid x \in W_{1}, y \in W_{2}\right\}$.

Lemma 6. If W_{1} and W_{2} are two subspaces of V, then $W_{1}+W_{2}$ is also a subspace.

Proof. $\overrightarrow{0}=\overrightarrow{0}+\overrightarrow{0} \in W_{1}+W_{2}$.
Suppose that $x \in W_{1}+W_{2}, y \in W_{1}+W_{2}$ and c is a scalar. Then

- $x=x_{1}+x_{2}$ for some $x_{1} \in W_{1}$ and $x_{2} \in W_{2}$ and
- $y=y_{1}+y_{2}$ for some $y_{1} \in W_{1}$ and $y_{2} \in W_{2}$.

So, $c x+y=c\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right)=c x_{1}+c x_{2}+y_{1}+y_{2}=\left(c x_{1}+y_{1}\right)+\left(c x_{2}+y_{2}\right) \in$ $W_{1}+W_{2}$.

Definition 7. Let W_{1}, W_{2}, and V be vector spaces. We say that

$$
V=W_{1} \oplus W_{2}
$$

iff
(1) $V=W_{1}+W_{2}$ and
(2) $W_{1} \cap W_{2}=\{\overrightarrow{0}\}$.

We say that $W_{1} \oplus W_{2}$ is the direct sum of W_{1} and W_{2}.
Exercise: Let W_{1} be the space of all symmetric matrices in $M_{2,2}(F)$, and let W_{1} be the space of all skew-symmetric matrices in $M_{2,2}(F)$. Suppose also that the characteristic of F is not two. Show that $M_{2,2}(F)=W_{1} \oplus W_{2}$.

Proof. First we show that $M_{2,2}(F)=W_{1}+W_{2}$. Clearly $W_{1}+W_{2} \subset$ $M_{2,2}(F)$. Now, suppose that $A \in M_{2,2}(F)$. Say $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then $A=\left(\begin{array}{cc}a & \frac{b+c}{2} \\ \frac{b+c}{2} & d\end{array}\right)+\left(\begin{array}{cc}0 & \frac{b-c}{2} \\ \frac{c-b}{2} & 0\end{array}\right) \in W_{1}+W_{2}$.

Next we have to show that $W_{1} \cap W_{2}=\{\overrightarrow{0}\}$. Suppose that $A \in W_{1} \cap W_{2}$. Then $A=A^{t}=-A$. So for any entry of $A, a_{i j}=-a_{i j}=0$, since the characteristic of F is not 2 . Then $A=O$.

Exercise: Let V be a vector space, and $x, y \in V$.
(1) Show that $\{a x \mid a \in F\}$ is a subspace of V.
(2) Show that $\{a x+b y \mid a, b \in F\}$ is a subspace of V.

Section 1.4 Linear Combinations

We start with the key notion:

Definition 8. Suppose that V is a vector space over F and $S \subset V$ is nonempty. A vector $x \in V$ is a linear combination of vectors in S, if

$$
x=a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}
$$

for some vectors v_{1}, \ldots, v_{n} in S and scalars a_{1}, \ldots, a_{n} in F.
The span of $S, \operatorname{Span}(S)$ is the set of all linear combinations of vectors in S.

Also define $\operatorname{Span}(\emptyset)=\{\overrightarrow{0}\}$.
Examples. Consider \mathbb{R}^{2}.
(1) $\operatorname{Span}(\{\langle 1,0\rangle,\langle 0,1\rangle\})=\mathbb{R}^{2}$;
(2) $\operatorname{Span}(\langle 1,0\rangle)=\{\langle a, 0\rangle \mid a \in \mathbb{R}\}$;
(3) $\operatorname{Span}(\langle 1,1\rangle)=\{\langle a, a\rangle \mid a \in \mathbb{R}\}$;
(4) $\operatorname{Span}(\langle 17,17\rangle)=\operatorname{Span}(\langle 1,1\rangle)$;
(5) $\operatorname{Span}(\{\langle 1,1\rangle,\langle 0,2\rangle\})=\mathbb{R}^{2}$;

For a vector space V, if $V=\operatorname{Span}(S)$, we say that S generates V or that S spans V.

Theorem 9. Let V be a vector space and $S \subset V$. Then $\operatorname{Span}(S)$ is a subspace. Moreover, $\operatorname{Span}(S)$ is the smallest subspace containing S i.e. if W is a subspace of V with $S \subset W$, then $\operatorname{Span}(S) \subset W$.
Proof. Let us first check that $\operatorname{Span}(S)$ is a subspace, by verifying that the three requirements for a subspace hold. If $S=\emptyset$, then $\operatorname{Span}(S)=\{\overrightarrow{0}\}$, which is clearly a subspace. So, assume that S is nonempty.
(1) Using that S is nonempty, pick any vector $x \in S$. Then

$$
\overrightarrow{0}=0 x \in \operatorname{Span}(S) .
$$

(2) For closure under vector addition, suppose that $x, y \in \operatorname{Span}(S)$. Then for some vectors $v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{k}$ in S and scalars $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{k}$, we have that

$$
x=a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}, \text { and } y=b_{1} w_{1}+b_{2} w_{2}+\ldots+b_{k} w_{k}
$$

Then

$$
x+y=a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}+b_{1} w_{1}+b_{2} w_{2}+\ldots+b_{k} w_{k} \in \operatorname{Span}(S)
$$

(3) For closure under scalar multiplication, suppose that $x \in \operatorname{Span}(S)$ and c is a scalar. Then for some vectors v_{1}, \ldots, v_{n} in S and scalars a_{1}, \ldots, a_{n}, we have that

$$
x=a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n} .
$$

Then $c x=c a_{1} v_{1}+c a_{2} v_{2}+\ldots+c a_{n} v_{n} \in \operatorname{Span}(S)$.
It follows that $\operatorname{Span}(S)$ is a subspace of V.
Now, for the second part of the theorem suppose that W is a subspace of V and $S \subset W$. We have to show that $\operatorname{Span}(S) \subset W$.

Let $x \in \operatorname{Span}(S)$. Then $x=a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}$, where v_{1}, \ldots, v_{n} are vectors in S and a_{1}, \ldots, a_{n} are scalars. By closure under scalar multiplication $a_{i} v_{i} \in W$, for each $i \leq n$. And by closure under vector addition the sum $x \in W$.

Example. \mathbb{R}^{3}.

- The vectors $(1,0,0),(0,1,0)$, and $(0,0,1)$ span \mathbb{R}^{3}.
- The vectors $(1,1,1),(0,-2,0)$, and $(0,1,1)$ span \mathbb{R}^{3}.

Example. Polynomials

- The polynomials x^{2}, x, and 1 span $P_{2}(\mathbb{R})$.
- The polynomials $x^{2}+x+1,5 x^{2}$ and 1 span $P_{2}(\mathbb{R})$.
- The polynomials $x+1$ and $2 x$ span $\mathbb{P}_{1}(\mathbb{R})$. Note that this is a subspace of $\mathbb{P}_{2}(\mathbb{R})$.
- The polynomials $1, x, x^{2}, x^{3}, \ldots, x^{n}, \ldots$ span $P(\mathbb{R})$.

Example. Matrices

- The matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \operatorname{span} \mathbb{M}_{2,2}(\mathbb{R})$.
- The matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ span the space of all symmetric matrices in $\mathbb{M}_{2,2}(\mathbb{R})$.
- The matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ span the space of all diagonal matrices in $\mathbb{M}_{2,2}(\mathbb{R})$.

