MATH 320 NOTES, WEEK 2

Recall: Let V be a vector space, $W \subset V$ is a subspace iff $\vec{0} \in W$, and W is closed under vector addition and multiplication.

Some trivial examples: both $\{\vec{0}\}$ and V are subspaces of V.

Let us recall some more set theoretic notation:

- Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- Union: $A \cap B = \{x \mid x \in A \text{ or } x \in B\}$
- Set difference: $A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$

Recall the key theorem that W is a subspace of V iff $\vec{0} \in W$, and W is closed under both vector addition and scalar multiplication. We can actually show the last two at once:

Corollary 1. W is a subspace of a vector space V over F iff $\vec{0} \in W$, and for all $x, y \in W$ and $c \in F$, we have $cx + y \in W$.

Proof. Exercise.

Definition 2. A matrix $A \in M_{n,n}(F)$ is called skew-symmetric iff $A^t = -A$.

Example. Show that the set of all skew-symmetric n by n matrices is a subspace of $M_{n,n}(F)$.

Theorem 3. Suppose that W_1 and W_2 are two subspaces of a vector space V. Then their intersection $W_1 \cap W_2$ is also a subspace.

Proof. We have to check the three requirements of being a subspace hold for $W_1 \cap W_2$.

- (1) $\vec{0} \in W_1$ and $\vec{0} \in W_2$, so $\vec{0} \in W_1 \cap W_2$.
- (2) Suppose $x, y \in W_1 \cap W_2$. Since W_1 is a subspace and $x, y \in W_1$, we have $x + y \in W_1$. Also, since W_2 is a subspace and $x, y \in W_2$, we have $x + y \in W_2$. So $x + y \in W_1 \cap W_2$.
- (3) Suppose $x \in W_1 \cap W_2, c \in F$. Since W_1 is a subspace and $x \in W_1$, we have $cx \in W_1$. Also, since W_2 is a subspace and $x \in W_2$, we have $cx \in W_2$. So $cx \in W_1 \cap W_2$.

Remark 4. Similarly, any intersection of subspaces $W_1 \cap W_2 \dots \cap W_n$ is a subspace.

Question: What about $W_1 \cup W_2$?

This question motivates the following definition:

Definition 5. Let W_1 and W_2 be two subspaces of V. Define the sum $W_1 + W_2 = \{x + y \mid x \in W_1, y \in W_2\}.$

Lemma 6. If W_1 and W_2 are two subspaces of V, then $W_1 + W_2$ is also a subspace.

Proof. $\vec{0} = \vec{0} + \vec{0} \in W_1 + W_2$.

Suppose that $x \in W_1 + W_2, y \in W_1 + W_2$ and c is a scalar. Then

• $x = x_1 + x_2$ for some $x_1 \in W_1$ and $x_2 \in W_2$ and

• $y = y_1 + y_2$ for some $y_1 \in W_1$ and $y_2 \in W_2$.

So, $cx+y = c(x_1+x_2)+(y_1+y_2) = cx_1+cx_2+y_1+y_2 = (cx_1+y_1)+(cx_2+y_2) \in W_1 + W_2.$

Definition 7. Let W_1 , W_2 , and V be vector spaces. We say that

$$V = W_1 \oplus W_2$$

iff

(1)
$$V = W_1 + W_2$$
 and

(2)
$$W_1 \cap W_2 = \{\vec{0}\}.$$

We say that $W_1 \oplus W_2$ is the direct sum of W_1 and W_2 .

Exercise: Let W_1 be the space of all symmetric matrices in $M_{2,2}(F)$, and let W_1 be the space of all skew-symmetric matrices in $M_{2,2}(F)$. Suppose also that the characteristic of F is not two. Show that $M_{2,2}(F) = W_1 \oplus W_2$.

Proof. First we show that $M_{2,2}(F) = W_1 + W_2$. Clearly $W_1 + W_2 \subset M_{2,2}(F)$. Now, suppose that $A \in M_{2,2}(F)$. Say $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then $A = \begin{pmatrix} a & \frac{b+c}{2} \\ \frac{b+c}{2} & d \end{pmatrix} + \begin{pmatrix} 0 & \frac{b-c}{2} \\ \frac{c-b}{2} & 0 \end{pmatrix} \in W_1 + W_2$.

Next we have to show that $W_1 \cap W_2 = \{\vec{0}\}$. Suppose that $A \in W_1 \cap W_2$. Then $A = A^t = -A$. So for any entry of A, $a_{ij} = -a_{ij} = 0$, since the characteristic of F is not 2. Then A = O.

Exercise: Let V be a vector space, and $x, y \in V$.

- (1) Show that $\{ax \mid a \in F\}$ is a subspace of V.
- (2) Show that $\{ax + by \mid a, b \in F\}$ is a subspace of V.

Section 1.4 Linear Combinations

We start with the key notion:

Definition 8. Suppose that V is a vector space over F and $S \subset V$ is nonempty. A vector $x \in V$ is a linear combination of vectors in S, if

 $x = a_1 v_1 + a_2 v_2 + \dots + a_n v_n$

for some vectors $v_1, ..., v_n$ in S and scalars $a_1, ..., a_n$ in F. The span of S, Span(S) is the set of all linear combinations of vectors in S.

Also define $Span(\emptyset) = \{\overline{0}\}.$

Examples. Consider \mathbb{R}^2 .

- (1) $Span(\{\langle 1, 0 \rangle, \langle 0, 1 \rangle\}) = \mathbb{R}^2;$
- (2) $Span(\langle 1, 0 \rangle) = \{ \langle a, 0 \rangle \mid a \in \mathbb{R} \};$
- (3) $Span(\langle 1,1\rangle) = \{\langle a,a\rangle \mid a \in \mathbb{R}\};\$
- (4) $Span(\langle 17, 17 \rangle) = Span(\langle 1, 1 \rangle);$
- (5) $Span(\{\langle 1,1\rangle,\langle 0,2\rangle\}) = \mathbb{R}^2;$

For a vector space V, if V = Span(S), we say that S generates V or that S spans V.

Theorem 9. Let V be a vector space and $S \subset V$. Then Span(S) is a subspace. Moreover, Span(S) is the smallest subspace containing S i.e. if W is a subspace of V with $S \subset W$, then $Span(S) \subset W$.

Proof. Let us first check that Span(S) is a subspace, by verifying that the three requirements for a subspace hold. If $S = \emptyset$, then $Span(S) = \{\vec{0}\}$, which is clearly a subspace. So, assume that S is nonempty.

(1) Using that S is nonempty, pick any vector $x \in S$. Then

$$0 = 0x \in Span(S).$$

(2) For closure under vector addition, suppose that $x, y \in Span(S)$. Then for some vectors $v_1, ..., v_n, w_1, ..., w_k$ in S and scalars $a_1, ..., a_n, b_1, ..., b_k$, we have that

$$x = a_1v_1 + a_2v_2 + \dots + a_nv_n$$
, and $y = b_1w_1 + b_2w_2 + \dots + b_kw_k$.

Then

 $x + y = a_1v_1 + a_2v_2 + \dots + a_nv_n + b_1w_1 + b_2w_2 + \dots + b_kw_k \in Span(S).$

(3) For closure under scalar multiplication, suppose that $x \in Span(S)$ and c is a scalar. Then for some vectors $v_1, ..., v_n$ in S and scalars $a_1, ..., a_n$, we have that

$$x = a_1 v_1 + a_2 v_2 + \dots + a_n v_n.$$

Then $cx = ca_1v_1 + ca_2v_2 + ... + ca_nv_n \in Span(S).$

It follows that Span(S) is a subspace of V.

Now, for the second part of the theorem suppose that W is a subspace of V and $S \subset W$. We have to show that $Span(S) \subset W$.

Let $x \in Span(S)$. Then $x = a_1v_1 + a_2v_2 + ... + a_nv_n$, where $v_1, ..., v_n$ are vectors in S and $a_1, ..., a_n$ are scalars. By closure under scalar multiplication $a_iv_i \in W$, for each $i \leq n$. And by closure under vector addition the sum $x \in W$.

Example. \mathbb{R}^3 .

- The vectors (1,0,0), (0,1,0), and (0,0,1) span \mathbb{R}^3 .
- The vectors (1, 1, 1), (0, -2, 0), and (0, 1, 1) span \mathbb{R}^3 .

Example. Polynomials

- The polynomials x^2, x , and 1 span $P_2(\mathbb{R})$.
- The polynomials $x^2 + x + 1, 5x^2$ and 1 span $P_2(\mathbb{R})$.
- The polynomials x + 1 and 2x span $\mathbb{P}_1(\mathbb{R})$. Note that this is a subspace of $\mathbb{P}_2(\mathbb{R})$.
- The polynomials $1, x, x^2, x^3, ..., x^n, ...$ span $P(\mathbb{R})$.

Example. Matrices

- The matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ span $\mathbb{M}_{2,2}(\mathbb{R})$.
- The matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, and $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ span the space of all symmetric matrices in $\mathbb{M}_{2,2}(\mathbb{R})$.
- The matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ span the space of all diagonal matrices in $\mathbb{M}_{2,2}(\mathbb{R})$.