
MATH 320 NOTES, WEEK 2

Recall: Let V be a vector space, W ⊂ V is a subspace iff ~0 ∈ W , and W
is closed under vector addition and multiplication.

Some trivial examples: both {~0} and V are subspaces of V .
Let us recall some more set theoretic notation:

• Intersection: A ∩B = {x | x ∈ A and x ∈ B}
• Union: A ∩B = {x | x ∈ A or x ∈ B}
• Set difference: A \B = {x | x ∈ A and x /∈ B}

Recall the key theorem that W is a subspace of V iff ~0 ∈ W , and W is
closed under both vector addition and scalar multiplication. We can actually
show the last two at once:

Corollary 1. W is a subspace of a vector space V over F iff ~0 ∈ W , and
for all x, y ∈W and c ∈ F , we have cx + y ∈W .

Proof. Exercise.
�

Definition 2. A matrix A ∈Mn,n(F ) is called skew-symmetric iff At = −A.

Example. Show that the set of all skew-symmetric n by n matrices is a
subspace of Mn,n(F ).

Theorem 3. Suppose that W1 and W2 are two subspaces of a vector space
V . Then their intersection W1 ∩W2 is also a subspace.

Proof. We have to check the three requirements of being a subspace hold
for W1 ∩W2.

(1) ~0 ∈W1 and ~0 ∈W2, so ~0 ∈W1 ∩W2.
(2) Suppose x, y ∈ W1 ∩W2. Since W1 is a subspace and x, y ∈ W1, we

have x + y ∈ W1. Also, since W2 is a subspace and x, y ∈ W2, we
have x + y ∈W2. So x + y ∈W1 ∩W2.

(3) Suppose x ∈ W1 ∩W2, c ∈ F . Since W1 is a subspace and x ∈ W1,
we have cx ∈W1. Also, since W2 is a subspace and x ∈W2, we have
cx ∈W2. So cx ∈W1 ∩W2.

�

Remark 4. Similarly, any intersection of subspaces W1 ∩ W2... ∩ Wn is a
subspace.

Question: What about W1 ∪W2?

This question motivates the following definition:
1
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Definition 5. Let W1 and W2 be two subspaces of V . Define the sum
W1 + W2 = {x + y | x ∈W1, y ∈W2}.

Lemma 6. If W1 and W2 are two subspaces of V , then W1 + W2 is also a
subspace.

Proof. ~0 = ~0 +~0 ∈W1 + W2.
Suppose that x ∈W1 + W2, y ∈W1 + W2 and c is a scalar. Then

• x = x1 + x2 for some x1 ∈W1 and x2 ∈W2 and
• y = y1 + y2 for some y1 ∈W1 and y2 ∈W2.

So, cx+y = c(x1+x2)+(y1+y2) = cx1+cx2+y1+y2 = (cx1+y1)+(cx2+y2) ∈
W1 + W2.

�

Definition 7. Let W1, W2, and V be vector spaces. We say that

V = W1 ⊕W2

iff

(1) V = W1 + W2 and

(2) W1 ∩W2 = {~0}.
We say that W1 ⊕W2 is the direct sum of W1 and W2.

Exercise: Let W1 be the space of all symmetric matrices in M2,2(F ), and
let W1 be the space of all skew-symmetric matrices in M2,2(F ). Suppose also
that the characteristic of F is not two. Show that M2,2(F ) = W1 ⊕W2.

Proof. First we show that M2,2(F ) = W1 + W2. Clearly W1 + W2 ⊂

M2,2(F ). Now, suppose that A ∈ M2,2(F ). Say A =

(
a b
c d

)
. Then

A =

(
a b+c

2
b+c
2 d

)
+

(
0 b−c

2
c−b
2 0

)
∈W1 + W2.

Next we have to show that W1 ∩W2 = {~0}. Suppose that A ∈W1 ∩W2.
Then A = At = −A. So for any entry of A, aij = −aij = 0, since the
characteristic of F is not 2. Then A = O.

�

Exercise: Let V be a vector space, and x, y ∈ V .

(1) Show that {ax | a ∈ F} is a subspace of V .
(2) Show that {ax + by | a, b ∈ F} is a subspace of V .

Section 1.4 Linear Combinations

We start with the key notion:
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Definition 8. Suppose that V is a vector space over F and S ⊂ V is
nonempty. A vector x ∈ V is a linear combination of vectors in S, if

x = a1v1 + a2v2 + ... + anvn

for some vectors v1, ..., vn in S and scalars a1, ..., an in F .
The span of S, Span(S) is the set of all linear combinations of vectors in
S.

Also define Span(∅) = {~0}.

Examples. Consider R2.

(1) Span({〈1, 0〉, 〈0, 1〉}) = R2;
(2) Span(〈1, 0〉) = {〈a, 0〉 | a ∈ R};
(3) Span(〈1, 1〉) = {〈a, a〉 | a ∈ R};
(4) Span(〈17, 17〉) = Span(〈1, 1〉);
(5) Span({〈1, 1〉, 〈0, 2〉}) = R2;

For a vector space V , if V = Span(S), we say that S generates V or
that S spans V .

Theorem 9. Let V be a vector space and S ⊂ V . Then Span(S) is a
subspace. Moreover, Span(S) is the smallest subspace containing S i.e. if
W is a subspace of V with S ⊂W , then Span(S) ⊂W .

Proof. Let us first check that Span(S) is a subspace, by verifying that the

three requirements for a subspace hold. If S = ∅, then Span(S) = {~0},
which is clearly a subspace. So, assume that S is nonempty.

(1) Using that S is nonempty, pick any vector x ∈ S. Then

~0 = 0x ∈ Span(S).

(2) For closure under vector addition, suppose that x, y ∈ Span(S).
Then for some vectors v1, ..., vn, w1, ..., wk in S and scalars a1, ...., an, b1, ..., bk,
we have that

x = a1v1 + a2v2 + ... + anvn, and y = b1w1 + b2w2 + ... + bkwk.

Then

x + y = a1v1 + a2v2 + ... + anvn + b1w1 + b2w2 + ... + bkwk ∈ Span(S).

(3) For closure under scalar multiplication, suppose that x ∈ Span(S)
and c is a scalar. Then for some vectors v1, ..., vn in S and scalars
a1, ...., an, we have that

x = a1v1 + a2v2 + ... + anvn.

Then cx = ca1v1 + ca2v2 + ... + canvn ∈ Span(S).

It follows that Span(S) is a subspace of V .
Now, for the second part of the theorem suppose that W is a subspace of

V and S ⊂W . We have to show that Span(S) ⊂W .
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Let x ∈ Span(S). Then x = a1v1 + a2v2 + ... + anvn, where v1, ..., vn are
vectors in S and a1, ..., an are scalars. By closure under scalar multiplication
aivi ∈ W , for each i ≤ n. And by closure under vector addition the sum
x ∈W . �

Example. R3.

• The vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) span R3.
• The vectors (1, 1, 1), (0,−2, 0), and (0, 1, 1) span R3.

Example. Polynomials

• The polynomials x2, x, and 1 span P2(R).
• The polynomials x2 + x + 1, 5x2 and 1 span P2(R).
• The polynomials x + 1 and 2x span P1(R). Note that this is a

subspace of P2(R).
• The polynomials 1, x, x2, x3, ..., xn, .... span P (R).

Example. Matrices

• The matrices

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
and

(
0 0
0 1

)
span M2,2(R).

• The matrices

(
1 0
0 0

)
,

(
0 1
1 0

)
, and

(
0 0
0 1

)
span the space of all

symmetric matrices in M2,2(R).

• The matrices

(
1 0
0 0

)
and

(
0 0
0 1

)
span the space of all diagonal

matrices in M2,2(R).


